解题思路:小球所受的重力和拉力的合力提供圆周运动的向心力,根据mgtanθ=
m
4
π
2
T
2
r
,求出小球的周期.拉力在竖直方向的分力等于重力,根据该关系求出绳子的拉力.
(1)设绳子的拉力为F,拉力在竖直方向的分力等于重力,则F=
mg
cosθ
(2)小球所受重力和绳子的拉力的合力提供了向心力,得:
mgtanθ=
m
4π2
T2Lsinθ
解得:
T=2π
Lcosθ
g;
答:(1)绳子上的拉力为
mg
cosθ;
(2)小球做匀速圆周运动的周期为
2π
Lcosθ
g.
点评:
本题考点: 向心力;线速度、角速度和周期、转速.
考点点评: 解决本题的关键知道小球所受的重力和拉力的合力提供圆周运动的向心力.小球在竖直方向上平衡,即拉力在竖直方向的分力等于重力.