-tanC=tan(A+B)=(tanA+tanB)/(1-tanAtanB)=-1
===>tanA+tanB=(-1)(1-6)=5, 又tanA*tanB=6,a>b
∴tanA=3,tanB=2===>sinA=3/√10, sinB=2/√5
由正弦定理可得:
a=c*sinA/sinC=2√2(3/√10)/(√2/2)=12/√10=6√10/5
b=c*sinB/sinC=2√2(2/√5)/(√2/2)=8/√5=8√5/5
S△ABC=absinC/2=(12/√10)(8/√5)(√2/2)/2=24/5