(1) f'(x)=lnx+1
令f'(x)=0,则x=1/e. f(x)在(0,1/e)上单调递减, f(x)在[/1e,+∞]上单调递增
f(x)在[e,e∧2]上单调递增.
所以f(x)在[e,e∧2]上的值域是[e,2(e∧2)]
(2) f'(x)=a(lnx+1) 令)f'(x)=0,则x=1/(ae),
①当a>0的时候,
f(X)的取值范围是[ae,2a(e∧2)],f(x)≦f(e∧2)恒成立,
即让2a(e∧2)≦e-1 即可.
所以此时a的取值范围为 0
(1) f'(x)=lnx+1
令f'(x)=0,则x=1/e. f(x)在(0,1/e)上单调递减, f(x)在[/1e,+∞]上单调递增
f(x)在[e,e∧2]上单调递增.
所以f(x)在[e,e∧2]上的值域是[e,2(e∧2)]
(2) f'(x)=a(lnx+1) 令)f'(x)=0,则x=1/(ae),
①当a>0的时候,
f(X)的取值范围是[ae,2a(e∧2)],f(x)≦f(e∧2)恒成立,
即让2a(e∧2)≦e-1 即可.
所以此时a的取值范围为 0