解题思路:先把A点坐标和B点坐标代入反比例函数进行中可确定点A的坐标为(-3,1)、B点坐标为(-1,3),再作A点关于x轴的对称点C,B点关于y轴的对称点D,根据对称的性质得到C点坐标为(-3,-1),D点坐标为(1,3),CD分别交x轴、y轴于P点、Q点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用待定系数法确定PQ的解析式.
分别把点A(a,1)、B(-1,b)代入双曲线y=-
3
x(x<0)得a=-3,b=3,则点A的坐标为(-3,1)、B点坐标为(-1,3),
作A点关于x轴的对称点C,B点关于y轴的对称点D,所以C点坐标为(-3,-1),D点坐标为(1,3),
连结CD分别交x轴、y轴于P点、Q点,此时四边形PABQ的周长最小,
设直线CD的解析式为y=kx+b,
把C(-3,-1),D(1,3)分别代入
−3k+b=−1
k+b=3],
解得
k=1
b=2,
所以直线CD的解析式为y=x+2.
故选C.
点评:
本题考点: 反比例函数综合题.
考点点评: 本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式;熟练运用两点之间线段最短解决有关几何图形周长最短的问题.