已知双曲线中心在原点,焦点F1 ,F2 在坐标轴上,离心率e=根号2,且过点(4,根号10).(1)求双曲线的方程

1个回答

  • 1)设方程为 x²/a²-y²/b²=1

    ∵c²/a²=e²=2 b²=c²-a² ∴b²=2a²-a²=a²

    16/a²-10/a²=1 => a²=6 【若计算得a²为负数,则焦点在y轴】

    ∴方程 x²/6-y²/6=1 为所求.

    2)xm=3时,ym=m=±√(9-6)=±√3 (即ym'=√3;ym''=-√3)

    ∵F1(-√12,0) ; F2(√12,0)

    ∴M'F1的斜率 k(m'f1)=(ym'-yf1)/(xm'-xf1)=(√3-0)/(3+√12)=2-√3

    M'F2的斜率 k(m'f2)=(ym'-yf2)/(xm'-xf2)=(√3-0)/(3-√12)=-2-√3

    而2-√3=-1/(-2-√3)

    ∴M'F1⊥M'F2

    同理 M"F1⊥M"F2

    ∴MF1⊥MF2

    ∴向量MF1与向量MF2的点积为零.

    3)|F1F2|=2√12 |ym|=√3

    ∴S⊿F1MF2=(|F1F2|*|ym|)/2=2√12*√3/2=6