1、根据偶函数性质:
f(x)=f(-x)
即sin(x+α)+cos(x-2α)=sin(-x+α)+cos(-x-2α)
sin(α+x)-sin(α-x)+cos(x-2α)-cos(-x-2α)=0
sin(α+x)-sin(α-x)+cos(x-2α)-cos(x+2α)=0
利用和差化积公式:
2cosαsinx+2sinxsin(-2α)=0
sinx(cosα-sin2α)=0
cosα-2sinαcosα=0
cosα(1-2sinα)=0
α=π/2,α=π/6,α=5π/6
2、由图知:
最小正周期T=2π/3
7π/12-π/4=π/3=T/2
因为f(x)为正弦函数,且f(π/4)=0
所以f(7π/12)=f(π/4+T/2)=-f(π/4)=0