估计是求f(z)的解析式吧,由于函数解析,满足柯西黎曼方程,所以u'x=v'y=e^x*cosy,
,积分得u=e^x*cosy+g(y),再对x求偏导得u'y=-v'x=-e^x*siny+g'(y)=-e^x*siny,g'(y)=0,所以
g(y)=c,由于f(0)=1+g(0)=2得c=1,所以u=e^x*cosy+1,f(z)=u=e^x*cosy+1+ie^x*siny
估计是求f(z)的解析式吧,由于函数解析,满足柯西黎曼方程,所以u'x=v'y=e^x*cosy,
,积分得u=e^x*cosy+g(y),再对x求偏导得u'y=-v'x=-e^x*siny+g'(y)=-e^x*siny,g'(y)=0,所以
g(y)=c,由于f(0)=1+g(0)=2得c=1,所以u=e^x*cosy+1,f(z)=u=e^x*cosy+1+ie^x*siny