有关对数计算的所有公式

1个回答

  • 定义:

    若a^n=b(a>0且a≠1)

    则n=log(a)(b)

    基本性质:

    1、a^(log(a)(b))=b

    2、log(a)(MN)=log(a)(M)+log(a)(N);

    3、log(a)(M÷N)=log(a)(M)-log(a)(N);

    4、log(a)(M^n)=nlog(a)(M)

    推导

    1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b.

    2、MN=M×N

    由基本性质1(换掉M和N)

    a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)]

    由指数的性质

    a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

    又因为指数函数是单调函数,所以

    log(a)(MN) = log(a)(M) + log(a)(N)

    3、与(2)类似处理

    MN=M÷N

    由基本性质1(换掉M和N)

    a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]

    由指数的性质

    a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}

    又因为指数函数是单调函数,所以

    log(a)(M÷N) = log(a)(M) - log(a)(N)

    4、与(2)类似处理

    M^n=M^n

    由基本性质1(换掉M)

    a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

    由指数的性质

    a^[log(a)(M^n)] = a^{[log(a)(M)]*n}

    又因为指数函数是单调函数,所以

    log(a)(M^n)=nlog(a)(M)

    基本性质4推广

    log(a^n)(b^m)=m/n*[log(a)(b)]

    推导如下:

    由换底公式(换底公式见下面)[lnx是log(e)(x)e称作自然对数的底] log(a^n)(b^m)=ln(a^n)÷ln(b^n)

    由基本性质4可得

    log(a^n)(b^m) = [n×ln(a)]÷[m×ln(b)] = (m÷n)×{[ln(a)]÷[ln(b)]}

    再由换底公式

    log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完)

    其他性质

    [编辑本段]

    性质一:换底公式

    log(a)(N)=log(b)(N)÷log(b)(a)

    推导如下:

    N = a^[log(a)(N)]

    a = b^[log(b)(a)]

    综合两式可得

    N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

    又因为N=b^[log(b)(N)]

    所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}

    所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}

    所以log(a)(N)=log(b)(N) / log(b)(a)

    公式二:log(a)(b)=1/log(b)(a)

    证明如下:

    由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数

    log(b)(b)=1 =1/log(b)(a) 还可变形得:log(a)(b)×log(b)(a)=1