化简tan(x/2+π/4)-tan(π/4-x/2)

3个回答

  • tan[a+b]= [tana+tanb]/(1-tanatab)

    tan[a-b]= [tana-tanb]/(1+tanatab)

    tan(x/2+π/4)-tan(π/4-x/2)

    = [tan(x/2)+1]/[1-tan(x/2)] - [1-tan(x/2)]/[1+tan(x/2)]

    = {[tan(x/2)+1]^2-[1-tan(x/2)]^2}/[1-tan^2(x/2)]

    = 4tan(x/2)/[1-tan^2(x/2)]

    = 4tan(x/2)cos^2(x/2)/[1-tan^2(x/2)]cos^2(x/2)

    = 4sin(x/2)cos(x/2)/[cos^2(x/2) -sin^2(x/2)]

    = 2sinx/cosx

    = 2tanx