(Ⅰ)当n=1时,a 1=S 1=p-2+q
当n≥2时,a n=S n-S n-1=pn 2-2n+q-p(n-1) 2+2(n-1)-q=2pn-p-2
∵{a n}是等差数列,a 1符合n≥2时,a n的形式,
∴p-2+q=2p-p-2,
∴q=0
(Ⅱ)∵ a 3 =
a 1 + a 5
2 ,由题意得a 3=18
又a 3=6p-p-2,∴6p-p-2=18,解得p=4
∴a n=8n-6
由a n=2log 2b n,得b n=2 4n-3.
∴ b 1 =2,
b n+1
b n =
2 4(n+1)-3
2 4n-3 = 2 4 =16 ,即{b n}是首项为2,公比为16的等比数列
∴数列{b n}的前n项和 T n =
2(1- 16 n )
1-16 =
2
15 (1 6 n -1) .