设OA斜率k1=m
k1k2=-1/2
OB斜率k2=(-1/2)/k1=-1/(2m)
OA所在直线方程y=k1x=mx,代入x²/4+y²/2=1:
x^2/4+(mx)^2/2=1
(2m^2+1)x^2=4
x^2=4/(2m^2+1)
y^2=m^2x^2=4m^2/(2m^2+1)
|OA|^2=4/(2m^2+1)+4m^2/(2m^2+1)=4(m^2+1)/(2m^2+1)
OB所在直线方程y=k2x=-1/(2m) x,代入x²/4+y²/2=1:
x^2/4+x^2/(8m^2)=1
(2m^2+1)x^2=8m^2
x^2=8m^2/(2m^2+1)
y^2=x^2/(4m^2)=2/(2m^2+1)
|OB|^2=8m^2/(2m^2+1)+2/(2m^2+1)=2(4m^2+1)/(2m^2+1)
|OA|^2+|OB|^2=4(m^2+1)/(2m^2+1) + 2(4m^2+1)/(2m^2+1)
=2(2m^2+2+4m^2+1)/(2m^2+1)
=6(2m^2+1)/(2m^2+1)
=6