证明:(1)平面VAD⊥平面ABCD,AB⊥AD,AB⊂平面ABCD,
平面VAD∩平面ABCD=AD,∴AB⊥面VAD
(2)取VD中点E,连接AE,BE,∵△VAD是正三角形,∴ AE⊥VD,AE=
3
2 AD
∵AB⊥面VAD,AE,VD⊂平面VAD
∴AB⊥VD,AB⊥AE∴AE⊥VD,AB⊥VD,AB∩AE=A,且AB,AE⊂平面ABE,D
VD⊥平面ABE,∵BE⊂平面ABE,∴BE⊥VD,
∴∠AEB即为所求的二面角的平面角.
在RT△ABE中, tan∠AEB=
AB
AE =
2
3
3 ,
cos∠AEB=
21
7