证明:由正弦定理,有a/sinA=b/sinB=c/sinC=2R,其中R为三角形ABC外接圆的半径,
则a=2RsinA,b=2RsinB,c=2RsinC.
由a b c 成等差数列,则2b=a+c,即2*2RsinB=2RsinA+2RsinC,化简得sinA+sinB=2sinB
证明:由正弦定理,有a/sinA=b/sinB=c/sinC=2R,其中R为三角形ABC外接圆的半径,
则a=2RsinA,b=2RsinB,c=2RsinC.
由a b c 成等差数列,则2b=a+c,即2*2RsinB=2RsinA+2RsinC,化简得sinA+sinB=2sinB