(1)若a=0,f(x)为奇函数,a≠0,f(x)非奇非偶.
(2)①:x∈[-1,0]时,f(x)=-x(x-a),f(x)=-[(x-a/2)^2-(a^2)/4],0>a>-2时,f(x)(max)=f(a/2)=(a^2)/4; .a≤-2时,f(x)(max)=f(-1)=-1-a;
②:x∈[0,1/2]时,f(x)=x(x-a)=(x-a/2)^2-(a^2)/4,此时,f(x)在[0,1/2]上单调递增,f(x)(max)=f(1/2)=1/4-a/2
(1)若a=0,f(x)为奇函数,a≠0,f(x)非奇非偶.
(2)①:x∈[-1,0]时,f(x)=-x(x-a),f(x)=-[(x-a/2)^2-(a^2)/4],0>a>-2时,f(x)(max)=f(a/2)=(a^2)/4; .a≤-2时,f(x)(max)=f(-1)=-1-a;
②:x∈[0,1/2]时,f(x)=x(x-a)=(x-a/2)^2-(a^2)/4,此时,f(x)在[0,1/2]上单调递增,f(x)(max)=f(1/2)=1/4-a/2