设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,

1个回答

  • 解题思路:(1)利用s1,s2,s3,结合(5n-8)Sn+1-(5n+2)Sn=An+B,推出方程组直接求A与B的值.

    (2)利用(1)化简(5n-8)Sn+1-(5n+2)Sn=An+B,得到(5n-3)sn+2-(5n+7)sn+1=-20n-28,然后利用等差数列的定义,证明数列{an}为等差数列.

    (1)由已知得s1=a1=1,s2=a1+a2=7,s3=a1+a2+a3=18

    由(5n−8)sn+1−(5n+2)sn=An+B知

    −3s2−7s1=A+B

    2s3−12s2=2A+B

    A+B=−28

    2A+B=−48⇒A=−20,B=−8

    (2)证明:由(1)知(5n-8)sn+1-(5n+2)sn=-20n-8①

    所以(5n-3)sn+2-(5n+7)sn+1=-20n-28②

    ②-①得(5n-3)sn+2-(10n-1)sn+1+(5n+2)sn=-20③

    所以(5n+2)sn+3-(10n+9)sn+2+(5n+7)sn+1=-20④

    ④-③得(5n+2)sn+3-(15n+6)sn+2+(15n+6)sn+1-(5n+2)sn=0

    因为an+1=sn+1-sn,所以(5n+2)an+3-(10n+4)an+2+(5n+2)an+1=0

    又因为5n+2≠0,所以an+3-2an+2+an+1=0,即an+3-an+2=an+2-an+1 n≥1,

    又a3-a2=a2-a1=5.∴数列{an}为等差数列.

    点评:

    本题考点: 等差关系的确定.

    考点点评: 本题是中档题,考查数列的证明,数列中系数的求法,考查计算能力,注意验证数列的首项是否满足数列是等差数列.