解题思路:①AB为直径,所以∠ACB=90°,就是AC垂直BF,但不能得出AC平分BF,故错,
②只有当FP通过圆心时,才平分,所以FP不通过圆心时,不能证得AC平分∠BAF,
③先证出D、P、C、F四点共圆,再利用△AMP∽△FCP,得出结论.
④直径所对的圆周角是直角.
证明:①∵AB为直径,
∴∠ACB=90°,
∴AC垂直BF,但不能得出AC平分BF,
故①错误,
②只有当FP通过圆心时,才平分,所以FP不通过圆心时,不能证得AC平分∠BAF,
故②错误,
③如图:
∵AB为直径,
∴∠ACB=90°,∠ADB=90°,
∴D、P、C、F四点共圆,
∴∠CFP和∠CDB都对应
PC,
∴∠CFP=∠CDB,
∵∠CDB=CAB,
∴∠CFP=CAB,
又∵∠FPC=∠APM,
∴△AMP∽△FCP,
∠ACF=90°,
∴∠AMP=90°,
∴FP⊥AB,
故③正确,
④∵AB为直径,
∴∠ADB=90°,
∴BD⊥AF.
故④正确,
综上所述只有③④正确.
故选:D.
点评:
本题考点: 圆周角定理.
考点点评: 本题主要考查了圆周角的知识,解题的关键是明确直径所对的圆周角是直角.