以e为底n的除n的极限为0怎么证明?

1个回答

  • 不难,有好几个:

    证1 (用定义)记 n^(1/n) = 1+h[n],有 h[n]>0,且

    n = (1+h[n])^n > C(n,2)(h[n])^2 = [n(n-1)/2](h[n])^2,

    于是,有

    0 < h[n] < √[2/(n-1)],

    进而,有

    lnn/n = lnn^(1/n) = ln(1+h[n]) < h[n] < √[2/(n-1)].

    对任意ε>0,要使

    |lnn/n| = lnn^(1/n) < √[2/(n-1)] < ε,

    只需 n > 2/(ε^2)+1,取 N=[2/(ε^2)]+2,则当 n>N 时,有

    |lnn/n| = lnn^(1/n) < √[2/(n-1)] < … < ε,

    得证

    lim(n→∞)lnn/n = 0.

    证2 (用夹逼定理)记 n^(1/n) = 1+h[n],有 h[n]>0,且

    n = (1+h[n])^n > C(n,2)(h[n])^2 = [n(n-1)/2](h[n])^2,

    于是,有

    h[n] < √[2/(n-1)],

    进而,有

    0 < lnn/n = lnn^(1/n) = ln(1+h[n])

    < h[n] < √[2/(n-1)]

    →0 (n→∞),

    据夹逼定理,得知

    lim(n→∞)lnn/n = 0.

    证3 (利用 L'Hospital 法则)

    lim(n→∞)lnn/n

    = lim(x→+∞)lnx/x (∞/∞)

    = lim(x→+∞)(1/x)/1

    = 0.