不难,有好几个:
证1 (用定义)记 n^(1/n) = 1+h[n],有 h[n]>0,且
n = (1+h[n])^n > C(n,2)(h[n])^2 = [n(n-1)/2](h[n])^2,
于是,有
0 < h[n] < √[2/(n-1)],
进而,有
lnn/n = lnn^(1/n) = ln(1+h[n]) < h[n] < √[2/(n-1)].
对任意ε>0,要使
|lnn/n| = lnn^(1/n) < √[2/(n-1)] < ε,
只需 n > 2/(ε^2)+1,取 N=[2/(ε^2)]+2,则当 n>N 时,有
|lnn/n| = lnn^(1/n) < √[2/(n-1)] < … < ε,
得证
lim(n→∞)lnn/n = 0.
证2 (用夹逼定理)记 n^(1/n) = 1+h[n],有 h[n]>0,且
n = (1+h[n])^n > C(n,2)(h[n])^2 = [n(n-1)/2](h[n])^2,
于是,有
h[n] < √[2/(n-1)],
进而,有
0 < lnn/n = lnn^(1/n) = ln(1+h[n])
< h[n] < √[2/(n-1)]
→0 (n→∞),
据夹逼定理,得知
lim(n→∞)lnn/n = 0.
证3 (利用 L'Hospital 法则)
lim(n→∞)lnn/n
= lim(x→+∞)lnx/x (∞/∞)
= lim(x→+∞)(1/x)/1
= 0.