(立体几何)AB是圆O直径,C是异于A B的圆周上任意一点,PA垂直于圆O所在平面,则BC和PC
1个回答
PA垂直于AC,所以AC为PC在圆O上的射影,因为AC垂直于BC
,由三垂线定理得BC和PC垂直
相关问题
如图:AB是圆O的直径,PA垂直于圆O所在平面,C是圆周上不同于A、B的任意一点,AE垂直PC,F是PB上的动点
一道高二立体几何题,1.如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,D是
PA垂直于以AB为直径的圆所在平面,C是圆上异于A,B的一点 则PA垂直BC?BC垂直面PAC?AC垂直PB?PC垂直B
AB是圆O的直径,C是圆周上异于A B的任意一点,PA垂直平面ABC.若AH垂直PC,垂足为H,求证AH垂直平面PBC
如图所示:AB是圆O的直径,PA垂直于圆O所在的平面α,C是圆周上不同于A,B的任意一点,且PA=AB.求直线...
已知PA垂直于圆O所在平面,AB是圆O的直径,C是圆O上任意一点,F为点A在PC上的射影,求证:1.面PAC垂直于面AB
AB是圆O的直径,PA垂直于圆O所在的平面,C是圆O上不同于A,B的任一点,求证:BC⊥平面PAC
高中立体几何.给点简单提示,已知PA垂直于圆O所在的面,AB是圆O的直径.C是圆O上任意一点,过A作AE垂直PC于E.求
如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任一点,求证:平面PAC垂直于平面PBC.
(2012•北京模拟)如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任意一点.