1.∵ CD⊥AD CD⊥B'D ∴ CD⊥平面AB'D ∴ C到平面AB'D的距离=CD=2/2=1
2.可过A做AF⊥B'D 又∵ CD⊥ AF ∴AF⊥平面CB'D ∵∠ADF=60° (∵CD⊥平面AB'D )∴AF=根号下3*AD/2=(根号下3)/2 ∴A到平面CB'D的距离 =(根号下3)/2
3.∵AF⊥平面CB'D ∴∠ACF为AC与平面CB’D所成的角 ∵sin∠ACF=AF/AC=(根号下3)/2/ (2/根号下2)=(根号下6)/4
∴ ∠ACF=arcsin ((根号下6)/4)
∴AC与平面CB’D所成的角=arcsin ((根号下6)/4