解题思路:首先根据图象(1)(2)分别写出生产费用与年产量、每吨销售价与年销售量的函数关系式,然后根据销售额-生产费用=毛利润7500万元,列出方程,求解即可.
设年产量为t吨,费用为y(万元),每吨销售价为z(万元),则0≤t≤1000,
由图(1)可求得y=10t,
由图(2)求得z=-[1/100]t+30.
设毛利润为w(万元),
则w=tz-y=t(-[1/100]t+30)-10t=-[1/100]t2+20t.
∴-[1/100]t2+20t=7500,
∴t2-2000t+750000=0,
解得t1=500,t2=1500(不合题意,舍去).
故年产量是500吨时,当年可获得7500万元毛利润.
点评:
本题考点: 一元二次方程的应用;一次函数的应用.
考点点评: 本题已知信息由两个图象提供,图(1)与图(2)都是线段,看懂两图,理解关系式:毛利润=销售额-费用是解决本题的关键.由于在图象中提供的数据已满足求两个图象解析式的需要,故两个解析式均可求.本题易错在不注意销售额与销售单价的关系,而盲目地用w=z-y(销售单价-费用).