a/(b+c)+b/(c+a)+c/(a+b)=1
a²/(b+c)+ab/(c+a)+ac/(a+b)=a
a²/(b+c)=a-ab/(c+a)-ac/(a+b)
同理
b²/(c+a)=b-ab/(b+c)-bc/(a+b) c²/(a+b)=c-ac/(b+c)-bc/(c+a)
所以
a²/(b+c)+b²/(a+c)+c²/(a+b)
=a-ab/(c+a)-ac/(a+b)+b-ab/(b+c)-bc/(a+b)+c-ac/(b+c)-bc/(c+a)
=a+b+c-b(a+c)/(c+a)-c(a+b)/(a+b)-a(b+c)/(b+c)
=a+b+c-a-b-c
=0