关于数学的SOS1.设y=x平方 根号1-x分之(1+x)(1-2x),则dy=A.x平方 根号里面是1-x分之(1+x

1个回答

  • 真多啊

    1.用角ABC的正弦,余弦表示.

    (1)Sin(A+B+C)

    =sin[A+(B+C)]

    =sinAcos(B+C)+cosA*sin(B+C)

    =sinA(cosBcosC-sinBsinC)+cosA*(sinBcosC+cosBsinC)

    =sinAcosBcosC-sinAsinBsinC+cosAsinBcosC+cosAcosBsinC

    (2)COS(A+B+C)

    =cos[A+(B+C)]

    =cosAcos(B+C)-sinAsin(B+C)

    =cosA(cosBcosC-sinBsinC)-sinA(sinBcosC+cosBsinC)

    =cosAcosBcosC-cosAsinBsinC-sinAsinBcosC-sinAcosBsinC

    2.用角ABC的正切表示tg(A+B+C)

    tg(A+B+C)

    =tg[A+(B+C)]

    =[tgA+tg(B+C)]/[1-tgA*tg(B+C)]

    =tgA+[(tgB+tgC)/(1-tgBtgC)]/[1-tgA*(tgB+tgC)/(1-tgBtgC)]

    =[tgA(1-tgBtgC)+tgB+tgC]/[1-tgBtgC-tgA*(tgB+tgC)]

    =(tgA+tgB+tgC-tgAtgBtgC)/(1-tgAtgB-tgBtgC-tgAtgC)

    3.证明

    (1)cos3a=4cos'3a-3cosa('3为指数)

    cos3a

    =cos(2a+a)

    =cos2a*cosa-sin2asina

    =(2cosa^2-1)cosa-2sinacosasina

    =(2cosa^2-1)cosa-2(sina^2)cosa

    =(2cosa^2-1)cosa-2(1-cosa^2)cosa

    =4cosa^3-3cosa

    实际上可以直接利用第1小题的证明

    cos3a

    =cos(a+a+a)

    =cosa*cosa*cosa-cosa*sina*sina-sinasinacosa-sinacosasina

    =4cosa^3-3cosa 注意:sina^2=1-cosa^2

    (2)tan3a=(3tana-tan'3a)/(1-3tan'2a)('3,'2为指数)

    tg3a

    =tg(a+a+a) 直接利用第2题的公式

    =(tga+tga+tga-tga*tga*tga)/(1-tga*tga-tga*tga-tga*tga)

    =(3tga-tga^3)/(1-3tga^2)