椭圆的面积公式
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长). 或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).
椭圆的周长公式
椭圆周长没有公式,有积分式或无限项展开式. 椭圆周长(L)的精确计算要用到积分或无穷级数的求和.如 L = ∫[0,π/2]4a * sqrt(1-(e*cost)²)dt≈2π√((a²+b²)/2) [椭圆近似周长],其中a为椭圆长半轴,e为离心率 椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则 e=PF/PL
椭圆的准线方程
x=±a^2/c
椭圆的离心率公式
e=c/a(0b>0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3. 1.求椭圆C的方程. 2.直线l:y=x+1与椭圆交于A,B两点,P为椭圆上一点,求△PAB面积的最大值. 3.在(2)的基础上求△AOB的面积. 一 分析短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义),可知a=√3,又c/a=√6/3,代入得c=√2,b=√(a^2-c^2)=1,方程是x^2/3+y^2/1=1, 二 要求面积,显然以ab作为三角形的底边,联立x^2/3+y^2/1=1,y=x+1解得x1=0,y1=1,x2=-1.5,y2=-0.5.利用弦长公式有√(1+k^2))[x2-x1](中括号表示绝对值)弦长=3√2/2,对于p点面积最大,它到弦的距离应最大,假设已经找到p到弦的距离最大,过p做弦的平行线,可以 发现这个平行线是椭圆的切线是才会最大,这个切线和弦平行故斜率和弦的斜率=,设y=x+m,利用判别式等于0,求得m=2,-2.结合图形得m=-2.x=1.5,y=-0.5,p(1.5,-0.5), 三 直线方程x-y+1=0,利用点到直线的距离公式求的√2/2,面积1/2*√2/2*3√2/2=3/4,
双曲线
定义:我们把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数的轨迹称为双曲线 . 定义1:
平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离[1])的点的轨迹称为双曲线. 定义2:平面内,到给定一点及一直线的距离之比为大于1的常数的点的轨迹称为双曲线. 定义3:一平面截一圆锥面,当截面与圆锥面的母线不平行,且与圆锥面的两个圆锥都相交时,交线称为双曲线. 定义4:在平面直角坐标系中,二元二次方程f(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下条件时,其图像为双曲线. 1.a、b、c不都是零. 2.b^2 - 4ac > 0. 在高中的解析几何中,学到的是双曲线的中心在原点,图像关于x,y轴对称的情形.这时双曲线的方程退化为:x^2/a^2 - y^2/b^2 = 1. 上述的四个定义是等价的.
双曲线的简单几何性质
1、轨迹上一点的取值范围:│x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上). 2、对称性:关于坐标轴和原点对称. 3、顶点:A(-a,0),A'(a,0).同时 AA'叫做双曲线的实轴且│AA'│=2a. B(0,-b),B'(0,b).同时 BB'叫做双曲线的虚轴且│BB'│=2b. 4、渐近线: 焦点在x轴:y=±(b/a)x. 焦点在y轴:y=±(a/b)x.圆锥曲线ρ=ep/1-ecosθ当e>1时,表示双曲线.其中p为焦点到准线距离,θ为弦与x轴夹角. 令1-ecosθ=0可以求出θ,这个就是渐近线的倾角.θ=arccos(1/e) 令θ=0,得出ρ=ep/1-e,x=ρcosθ=ep/1-e 令θ=PI,得出ρ=ep/1+e ,x=ρcosθ=-ep/1+e 这两个x是双曲线定点的横坐标. 求出它们的中点的横坐标(双曲线中心横坐标) x=[(ep/1-e)+(-ep/1+e)]/2 (注意化简一下) 直线ρcosθ=[(ep/1-e)+(-ep/1+e)]/2 是双曲线一条对称轴,注意是不与曲线相交的对称轴. 将这条直线顺时针旋转PI/2-arccos(1/e)角度后就得到渐近线方程,设旋转后的角度是θ’ 则θ’=θ-[PI/2-arccos(1/e)] 则θ=θ’+[PI/2-arccos(1/e)] 代入上式: ρcos{θ’+[PI/2-arccos(1/e)]}=[(ep/1-e)+(-ep/1+e)]/2 即:ρsin[arccos(1/e)-θ’]=[(ep/1-e)+(-ep/1+e)]/2 现在可以用θ取代式中的θ’了 得到方程:ρsin[arccos(1/e)-θ]=[(ep/1-e)+(-ep/1+e)]/2 现证明双曲线x^2/a^2-y^/b^2=1 上的点在渐近线中 设M(x,y)是双曲线在第一象限的点,则 y=(b/a)√(x^2-a^2) (x>a) 因为x^2-a^20) Y^2/(-2c) - X^2/(-2c) = 1 (c