求导f(x)=(pi*tanx*secx)^6,还有f(x)=arcsin(sinx+1/2)高分,

1个回答

  • 1,f(x)=(πtan sec x)^6

    f'(x)=[6(πtan sec x)^5]×[πsec^2(sec x)]×[secx tanx]

    =6π^6(tan secx)^5×(sec secx)^2×secx×tanx

    令g(x)=πtan sec x

    f(x)=[g(x)]^6

    由复合函数的求导规则

    f'(x)=6[g(x)]^5×g'(x)

    g'(x)=πtan'(sec x)×sec'x

    ={π[sec (sec x)]^2}×(secx tanx).

    2,f(x)=arcsin(sinx+1/2)

    f'(x)={1/√[1-(sinx+1/2)^2]}×cos x.

    令g(x)=sin x+1/2

    这里要注意f(x)的定义域,-1≤sin x+1/2≤1

    即-1≤sin x≤1/2.

    定义域为:[-π/2+2kπ,π/6+2kπ]∪[5π/6+2kπ,2π+2kπ].

    f'(x)=1/√{1-[g(x)]^2}×g'(x)

    g'(x)=cos x.