∵AO⊥BC,且AO是⊙O的半径,
∴AO垂直平分BC,
∴AB=AC,即∠ABC=∠ACB,
∵D是
AC 的中点,
∴∠ABC=2∠DCA=2∠DAC,
∴∠ACB=2∠DCA,
∵四边形ABCD内接于⊙O,
∴∠BCD=∠DAE=126°,
∴∠ACB+∠DCA=126°,
即3∠DCA=126°,
∴∠DAC=∠DCA=42°.
故选B.
∵AO⊥BC,且AO是⊙O的半径,
∴AO垂直平分BC,
∴AB=AC,即∠ABC=∠ACB,
∵D是
AC 的中点,
∴∠ABC=2∠DCA=2∠DAC,
∴∠ACB=2∠DCA,
∵四边形ABCD内接于⊙O,
∴∠BCD=∠DAE=126°,
∴∠ACB+∠DCA=126°,
即3∠DCA=126°,
∴∠DAC=∠DCA=42°.
故选B.