解题思路:根据条件建立函数关系式,利用函数单调性的性质即可得到结论.
设每天从报社买进x份,每月所获的利润为f(x),则
①当每天购入少于或等于250份的报纸的时候,全部都卖光了,
则f(x)=30×(1-0.9)x=3x,{x∈Z|0<x≤250},
则f(x)max=f(250)=750,
②当每天购入大于250份,少于或者等于400份时候的报纸的时候,20天卖光,10天没有卖完,
则f(x)=(1-0.9)×20x+(1-0.9)×10x-(0.9-0.1)×10(x-250)
=-6x+2250,{x∈Z|250<x≤400},
则f(x)max=f(250)=750.
③当每天购入大于400份的报纸的时候,30天都没有卖完,则
f(x)=(1-0.9)×20×400+(1-0.9)×10×250-(0.9-0.1)×20×(x-400)-(0.9-0.1)×10×(x-250)=-24x+9450,{x∈Z|x>400},
则f(x)max=f(400)=-150
综上可知道,当报社每天买进250份的时候,每月所得利润最大,为750元.
点评:
本题考点: 函数模型的选择与应用.
考点点评: 本题主要考查函数的应用问题,根据条件建立函数关系,利用函数单调性的性质是解决本题的关键.