(Ⅱ)当m=1/4时
,轨迹E的方程为x²/4+y²=1,
设圆的方程为x²+y²=r²(0<r<1),当
切线斜率存在时,可设圆的任一切线方程为y=kx+t,
A(x1,y1),B(x2,y2),
所以|t|/根号(1+k²)=r,
即t²=r²(1+k²).①
因为OA⊥OB,
所以x1x2+y1y1=0,
即x1x2+(kx1+t)(kx2+t)=0,
整理得(1+k²)x1x2+kt(x1+x2)+t2=0.②
由方程组x²/4+y²=1和y=kx+t
消去y得
(1+4k²)x+²8ktx+4t²-4=0.③
由韦达定理x1+x2=-8kt/1+4k²
x1•x2=4t²-4/1+4k²
代入②式并整理得
即5t²=4+4k²
结合①式有5r²=4,
r=2根号5/5∈(0,1),
当切线斜率不存在时,x²+y²=4/5也满足题意,
故所求圆的方程为x²+y²=4/5