关于数列求和问题………… 若数列的通项公式是n^2 那他的各项和Sn为?

1个回答

  • 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6

    利用立方差公式

    n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]

    =n^2+(n-1)^2+n^2-n

    =2*n^2+(n-1)^2-n

    2^3-1^3=2*2^2+1^2-2

    3^3-2^3=2*3^2+2^2-3

    4^3-3^3=2*4^2+3^2-4

    .

    n^3-(n-1)^3=2*n^2+(n-1)^2-n

    各等式全相加

    n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)

    n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)

    n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1

    n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2

    3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)

    =(n/2)(n+1)(2n+1)

    1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)Sn=1/6n*(n+1)(2n+1)