根据题意,先整理一下解析式..
椭圆: x^2/4+y^2/3=1 ...(1)
直线: y=kx+sqrt(3)k ...(2)
设 A(x1,y1) B(x2,y2) 不妨设A在x轴上方,B在下方,则y10
S(AOB)=S(POA)+S(POB)=1/2*PO*|y1|+1/2*PO*|y2|=1/2*PO*(y2-y1)
=sqrt(3)/2*(y2-y1)
因为y=kx+sqrt(3)k
所以:
S(AOB)=sqrt(3)/2 * (y2-y1)
=sqrt(3)/2 * k(x1-x2)
=sqrt(3)/2 * k * sqrt((x1+x2)^2-4x1x2)... (3)
(1) (2)联立以后得到一个关于x的二次方程,根据韦达定理求出x1+x2 x1x2 代入(3)式 然后就求出面积S(AOB)了