求下列微分方程的同解1.xy''=y'ln(y'/x) y=1/C1(x-1/C1)e^(C1x+1)+C22.yy''
xdt/dx=t(lnt-1)==>dt/"}}}'>

1个回答

  • 1.设y'/x=t,则y'=xt,y''= t+xdt/dx

    ∴x( t+xdt/dx)=xt*lnt ==>xdt/dx=t(lnt-1)

    ==>dt/[t(lnt-1)]=dx/x

    ==>d(lnt)/(lnt-1)=dx/x

    ==>ln│lnt-1│=ln│x│+ln│C1│ (C1是积分常数)

    ==>lnt-1=C1x

    ==>y'/x=e^(C1x+1)

    ==>y'=xe^(C1x+1)

    故y=∫xe^(C1x+1)dx

    =xe^(C1x+1)/C1-1/C1∫e^(C1x+1)dx (应用分部积分法)

    =xe^(C1x+1)/C1-e^(C1x+1)/C1²+C2 (C2是积分常数)

    =(x-1/C1)e^(C1x+1)/C1+C2 (C1,C2是积分常数);

    2.设y'=p,则y''=pdp/dy

    ∴ypdp/dy-p²=y²p ==>p(ydp/dy-p-y²)=0

    ==>p=0,或ydp/dy-p-y²=0

    当p=0时,y'=0 ==>y=C (C是积分常数)

    当ydp/dy-p-y²=0时,有ydp/dy-p=y².(1)

    先求齐次方程ydp/dy-p=0的通解

    ∵ydp/dy-p=0 ==>dp/p=dy/y

    ==>ln│p│=ln│y│+ln│C│ (C是积分常数)

    ==>p=Cy

    ∴齐次方程ydp/dy-p=0的通解是p=Cy

    于是,设方程(1)的通解为p=C(y)y (C(y)表示关于y的函数)

    ∵dp/dy=C'(y)y+C(y)

    代入(1)得C'(y)y²+C(y)y-C(y)y=y²

    ==>C'(y)=1

    ==>C(y)=y+C1 (C1是积分常数)

    ∴方程(1)的通解是p=y(y+C1)

    ==>y'=y(y+C1)

    ==>dy/[y(y+C1)]=dx

    ==>[1/y-1/(y+C1)]dy=C1dx

    ==>ln│y│-ln│y+C1│=C1x+ln│C2│ (C2是积分常数)

    ==>y/(y+C1)=C2e^(C1x)

    ==>y=(y+C1)C2e^(C1x)

    ==>[1-C2e^(C1x)]y=C1C2e^(C1x)

    ==>y=C1C2e^(C1x)/[1-C2e^(C1x)]

    故原微分方程的通解是y=C1C2e^(C1x)/[1-C2e^(C1x)],或y=C (C,C1,C2是积分常数).