1)
E(X)= ∫(0~1)∫(0~x)2x dydx
=2x^3/3|(0~1)
=2/3
E(Y)=∫(0~1)∫(0~x)2ydydx
=x^3/3|(0~1)
=1/3
E(XY)=∫(0~1)∫(0~x)2xydydx
=x^4/4 |(0~1)
=1/4
2)
E(X^2)=∫(0~1)∫(0~x)2x^2 dydx
=x^4/2|(0~1)
=1/2
E(Y^2)=∫(0~1)∫(0~x)2y^2 dydx
=x^4/6|(0~1)
=1/6
D(X)=1/2-(2/3)^2=1/18
D(Y)=1/6-1/9=1/18
3)
Cov(X,Y)=E(XY)-E(X)E(Y)=1/4-2/9=1/36
4)pxy= Cov(X,Y)/根号(D(X)D(Y))=(1/36)/(1/18)=1/2
5)协方矩阵
Cov(X,X) Cov(X,Y)
Cov(Y,X) Cov(Y,Y)
Cov(X,X)=D(X),Cov(Y,Y)=D(Y),Cov(X,Y)=Cov(Y,X)
协方矩阵
=1/18 1/36
1/36 1/18