假设方程在区间[0,1]上有两个不同的根a,b
则a^3-3a+1=0(1),
b^3-3b+1=0(2)
(1)-(2),得(a^3-b^3)-3(a-b)=0
(a-b)(a^2+b^2+ab-3)=0
因为a!=b,所以a^2+b^2+ab-3=0
又因为0
假设方程在区间[0,1]上有两个不同的根a,b
则a^3-3a+1=0(1),
b^3-3b+1=0(2)
(1)-(2),得(a^3-b^3)-3(a-b)=0
(a-b)(a^2+b^2+ab-3)=0
因为a!=b,所以a^2+b^2+ab-3=0
又因为0