解析如下:
设角1=角DAC,角2=角EBC
分析:(1)由图形可看出∠AFB,∠AEB分别是△AEF,△BCE的外角,根据外角的性质及传递性即可证得结论.
(2)根据三角形的外角的性质及等量代换不难证得结论.
证明:(1)∵∠AFB是△AEF的一个外角,
∴∠AFB>∠AEF(三角形的一个外角大于任何一个与它不相邻的内角).
∵∠AEF是△BCE的一个外角,
∴∠AEF>∠C(三角形的一个外角大于任何一个与它不相邻的内角).
∴∠AFB>∠C(不等式的性质).
(2)∵∠AFB=∠AEB+∠1,∠AEB=∠C+∠2(三角形的一个外角等于和它不相邻的两个内角的和)
∴∠AFB=∠1+∠C+∠2(等量代换).