证明:连接AC1,由AC=AA1,得四边形ACC1A1是正方形
∴AC1⊥A1C,
直三棱柱中CC1⊥平面ABC,
∴CC1⊥BC,
又BC⊥AC
∴BC⊥平面ACC1A1,
∴BC⊥AC1.
∵A1C∩BC=C
∴AC1⊥平面A1BC
连接AB1,则A1B与AB1的交点即为AB1的中点M,
又∵N是B1C1的中点,
∴MN∥AC1,
∴MN⊥平面A1BC且MN⊂B1MN
∴平面MNB1⊥平面A1CB.
证明:连接AC1,由AC=AA1,得四边形ACC1A1是正方形
∴AC1⊥A1C,
直三棱柱中CC1⊥平面ABC,
∴CC1⊥BC,
又BC⊥AC
∴BC⊥平面ACC1A1,
∴BC⊥AC1.
∵A1C∩BC=C
∴AC1⊥平面A1BC
连接AB1,则A1B与AB1的交点即为AB1的中点M,
又∵N是B1C1的中点,
∴MN∥AC1,
∴MN⊥平面A1BC且MN⊂B1MN
∴平面MNB1⊥平面A1CB.