由余弦定理:c^2 = a^2 + b^2 - 2ab·cosC ,而S=c²-(a-b)² ,整理得:
sinC = 4(1 - cosC) ,代入同角关系式解得:cosC = 1(舍)或 15/17 ,
故sinC = 8/17 ,S = (1/2)·ab·sinC = (4/17)·ab
《 (4/17)·[(a + b)/2]^2 = 4/17 ,因此当a = b = 1时 ,S有最大值 ,
最大值为 4/17
由余弦定理:c^2 = a^2 + b^2 - 2ab·cosC ,而S=c²-(a-b)² ,整理得:
sinC = 4(1 - cosC) ,代入同角关系式解得:cosC = 1(舍)或 15/17 ,
故sinC = 8/17 ,S = (1/2)·ab·sinC = (4/17)·ab
《 (4/17)·[(a + b)/2]^2 = 4/17 ,因此当a = b = 1时 ,S有最大值 ,
最大值为 4/17