(1)由sin2A+sin2B-sin2C=sinAsinB,利用正弦定理化简得:a2+b2-c2=ab,
∴cosC=
a2+b2?c2
2ab=[ab/2ab]=[1/2],即C=[π/3],
∵sinC+sin(B-A)=sin(B+A)+sin(B-A)=2sin2A,
∴sinBcosA=2sinAcosA,
当cosA=0,即A=[π/2],此时S△ABC=
2
3
3;
当cosA≠0,得到sinB=2sinA,利用正弦定理得:b=2a,此时此时S△ABC=
2
3
3;
(2)∵
CD=
CA+
CB
2,
∴|CD|2=
a2+b2+2abcos
π
3
4=
a2+b2+ab
4,
∵cosC=