解题思路:由a>b,函数f(x)=(x-a)(x-b)的图象可知,a>1>b>0.于是g(x)=loga(x+b)的图象是单调递增的,g(1)>0,从而可得答案.
由f(x)=(x-a)(x-b)的图象与a>b得:a>1>b>0.
∴g(x)=loga(x+b)的图象是单调递增的,可排除A,D,
又g(1)=loga(1+b)>loga1=0,可排除C,
故选B.
点评:
本题考点: 对数函数的图像与性质;二次函数的图象.
考点点评: 本题考查对数函数的图象与性质,由由a>b与函数f(x)=(x-a)(x-b)的图象得到a>1>b>0是关键,属于基础题.