因为z=z(x,y)是由方程sin(x-y+z)=x-y+z 确定的隐函数,即
由方程F(x,y,z)=sin(x-y+z)-x+y-z=0确定了隐函数z=z(x,y)
按照隐函数的求导公式,
先求出Fx=cos(x-y+z)-1,Fy= -cos(x-y+z)+1,Fz=cos(x-y+z)-1,
得到ez/ex= - Fx/Fz= -1,ez/ey= - Fy/Fz=1,则ez/ex+ez/ey=0.
因为z=z(x,y)是由方程sin(x-y+z)=x-y+z 确定的隐函数,即
由方程F(x,y,z)=sin(x-y+z)-x+y-z=0确定了隐函数z=z(x,y)
按照隐函数的求导公式,
先求出Fx=cos(x-y+z)-1,Fy= -cos(x-y+z)+1,Fz=cos(x-y+z)-1,
得到ez/ex= - Fx/Fz= -1,ez/ey= - Fy/Fz=1,则ez/ex+ez/ey=0.