解题思路:连接OC,根据圆周角定理得出∠ACB=∠ACO+∠BCO=90°,根据等腰三角形性质得出∠∠OBC=∠OCB,∠A=∠ACO,即可求出∠OCB+∠DCB=90°,根据切线的判定推出即可.
证明:连接OC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠A+∠ABC=90°,
又∵OB=OC,
∴∠OBC=∠OCB,
又∵∠DCB=∠A,
∴∠A+∠ABC=∠DCB+∠OCB=90°,
∴OC⊥DC,
∴CD是⊙O的切线.
点评:
本题考点: 切线的判定.
考点点评: 本题考查了等腰三角形的性质,圆周角定理,切线的判定的应用,注意:经过半径的外端,并且垂直于这条半径的直线是圆的切线.