已知函数f(x)=2mx-m^2+1/(x^2+1)

1个回答

  • f(x)=(x^2+1)/(2mx-m^2+1),(x€r)

    f(x)导函数f'(x)=[(x^2+1)'(2mx-m^2+1)-(x^2+1)(2mx-m^2+1)']/(2mx-m^2+1)^2

    =[2x×(2mx-m^2+1)-(x^2+1)×2m]/(2mx-m^2+1)^2

    =[2mx^2-(2m^2-2)x-2m]/(2mx-m^2+1)^2

    令f'(x)=0,则[2mx^2-(2m^2-2)x-2m]/(2mx-m^2+1)^2=0,mx^2-(m^2-1)x-m=0

    b^2-4ac=[-(m^2-1)]^2-4m×(-m)

    =m^4-2m^2+1+4m^2

    =(m+1)^2

    ∴x={-[-(m^2-1)]±√(m+1)^2}/2m

    ∵m>0

    ∴x=(m+1)/2 或x=(m^2-m-2)/2m

    又∵(m+1)/2-(m^2-m-2)/2m=(m+1)/m>0

    ∴(m+1)/2>(m^2-m-2)/2m

    当f'(x)>0时,x<(m^2-m-2)/2m,x>(m+1)/2

    当f'(x)<0时,(m^2-m-2)/2m<x<(m+1)/2

    ∴当x€(-∞,(m^2-m-2)/2m)时,f(x)单调递增

    当x€((m^2-m-2)/2m,(m+1)/2),f(x)单调递减

    当x€((m+1)/2,+∞)时,f(x)单调递增

    ∴f(x) 单调递增区间为[-∞,(m^2-m-2)/2m]或[(m+1)/2,+∞)]

    f(x)单调递减区间为[^2-m-2)/2m,(m+1)/2]

    当x=(m^2-m-2)/2m有极大值f((m^2-m-2)/2m)= -(m^4-2m^3+4m+4)/(4m^3+4m^2)

    当x=(m+1)/2有极小值f((m+1)/2))=(m^2+2m+5)/(m+1)