已知函数f(x)=sin(wx+π/6)+sin(wx-π/6)-2cos^2 wx/2 w>0 若对任意a属于R,函数

2个回答

  • (1)

    sin(wx+π/6)=sinwxcosπ/6+coswxsinπ/6

    sin(wx-π/6)=sinwxcosπ/6-coswxsinπ/6

    f(x)=sin(wx+π/6)+sin(wx-π/6)-2cos²wx/2

    f(x)=sinwx-2cos²wx/2

    f(x)=√3sinwx-coswx-1

    f(x)=2[(√3/2)sinwx-(1/2)coswx]-1

    f(x)=2(sinwxcosπ/6-sinπ/6coswx)-1

    f(x)=2sin(wx- π/6)-1

    1≥f(x)≥-3

    x属于(a,a+π)的图像与直线y=-1有且仅有一个交点

    可得f(x)的周期为2π,所以w=1

    (2)

    f(x)=2sin(x- π/6)-1

    因为sinx的单调增区间是

    2kπ-π/2≤x≤2kπ+π/2

    不等式各边同时减π/6

    2kπ-π/2-π/6≤x-π/6≤2kπ+π/2-π/6

    2kπ-2π/3≤x-π/6≤2kπ+π/3

    所以f(x)=2sin(x- π/6)-1的单调增区间是[2kπ-2π/3,2kπ+π/3]