数列的Sn的问题 好难哦分别求下列树列的Sn1、1*2+2*3+...+n(n+1)2、5+55+555+...+55.

1个回答

  • 1*2+2*3=3*(1*2)/3+3*(2*3)/3

    =(2*3)*1+(2*3)*3/3

    =(2*3)(1+3)/3=2*3*4/3

    1*2+2*3+3*4=2*3*4/3+3*(3*4)/3

    =3*4*(2+3)/3=3*4*5/3

    所以:

    Sn=n(n+1)(n+2)/3

    2.

    Sn=5/9(9+99+999+...+99...9(N个))

    =5/9(10-1=100-1+...10(N个)-1)

    3.1/(1*3)+1/(2*4)+...+1/[n+(n+2)]

    =[2/(1*3)+2/(2*4)+……+2/n(n+2)]/2

    ={(1/1-1/3)+(1/2-1/4)+(1/3-1/5)+……+[1/(n-1)-1/(n+1)]+[1/n-1/(n+2)]}/2

    =[1+1/2-1/(n+1)-1/(n+2)]/2

    =(3n^2-5n)/[4(n+1)(n+2)]

    4.S=1/2+2/2^2+3/2^3+.+(n-1)/2^(n-1)+n/2^n

    2S=1+2/2+3/2^2+.+(n-1)/2^(n-2)+n/2^(n-1)

    2S-S=1+1/2+1/2^2+.+1/2^(n-1)-n/2^n

    S=1*[1-(1/2)^n]/[1-1/2]-n/2^n=2-2/2^n-n/2^n=2-(n+2)/2^n