三角证明的一道题已知△ABC,求证sin2A+sin2B+sin2C=4sinAsinBsinC

1个回答

  • sin2A+sin2B+sin2C

    =sin2A+sin2B+sin2(π-A-B)

    =sin2A+sin2B+sin(2π-2A-2B)

    =sin2A+sin2B+sin(-2A-2B)

    =sin2A+sin2B-sin(2A+2B)

    =sin2A+sin2B-sin2Acos2B-cos2Asin2B

    =sin2A(1-cos2B)+sin2B(1-cos2A)

    =2sin2A(sinB)^2+sin2B(sinA)^2

    4sinAsinBsinC

    =4sinAsinBsin(π-A-B)

    =4sinAsinBsin(A+B)

    =4sinAsinB(sinAcosB+cosAsinB)

    =4sinAsinBsinAcosB+4sinAsinBcosAsinB

    =2sin2A(sinB)^2+sin2B(sinA)^2

    所以 成立

    如果我的答案对您有帮助,请点击右面的“采纳答案”按钮!

    祝您生活愉快,学习进步!谢谢!