解题思路:由※的定义,a※b=12分两类进行考虑:a和b一奇一偶,则ab=12;a和b同奇偶,则a+b=12.由a、b∈N*列出满足条件的所有可能情况,再考虑点(a,b)的个数即可.
a※b=12,a、b∈N*,
若a和b一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a,b)有4个;
若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有2×6-1=11个,
所以满足条件的个数为4+11=15个.
故选B
点评:
本题考点: 元素与集合关系的判断.
考点点评: 本题为新定义问题,考查对新定义和集合的理解,正确理解新定义的含义是解决本题的关键.