lim(x->0)1/x∫(0到sinx)cos(t^2)dt
1个回答
原式=lim(x->0){[∫(sinx,0)cos(t²)dt]/x}
=lim(x->0)[-cosx*cos(sinx)²] (0/0型极限,应用罗比达法则)
=(-1)*1
=-1
相关问题
Lim(x趋于0){∫(0~x^2)e^t *dt}/{sinx}^2
求极限 lim(x->0+) (int[0, X] cos (t^2)dt)^2/(int[0, X] sin (t^2
lim(x→0)(∫[0,x]e^(t^2)dt)^2/∫[0,x]e^(2t^2)dt
题目是这样的:lim(x->0)∫[cos(t^2)dt]/x
lim x→0 ∫sin t^2 dt / x^3=?从x积到0
设F(x)=∫(0趋向x) [(x-t)f(t)dt]/(sinx)^2 求lim(x趋向0)F(x),f(0)存在,
1,lim(x,y)→(0,0)xy/2-√(4-xy) 2,lim(x→0)1/x^2∫(0→x)(e^t-1)dt
lim(x→∞)[∫(0积到x)(t²*e^t²)dt]/[x*e^x²]=?
lim(n,0)x/(1-e^x^2)∫(0,x)e^t^2dt
设f(x)= ∫(0到x)cos t^2dt,则 ∫(0到1)f(x)dx=?