a^2(b+c)+c^2(a+b)
=a^2b+a^2c+ac^2+c^2b
=ac(a+c)+(a^2+c^2)b
=ac*2b+(a^2+c^2)b
=b(a+c)^2
=4b^2
b^2(c+a)
=b^2*2b
=2b^3
故a^2(b+c),b^2(c+a),c^2(a+b)构成等差数列
a^2(b+c)+c^2(a+b)
=a^2b+a^2c+ac^2+c^2b
=ac(a+c)+(a^2+c^2)b
=ac*2b+(a^2+c^2)b
=b(a+c)^2
=4b^2
b^2(c+a)
=b^2*2b
=2b^3
故a^2(b+c),b^2(c+a),c^2(a+b)构成等差数列