∵∠ABC = 45°
CD⊥AB
∴CD = BD
∵BE⊥AC
∠DFB = ∠EFC
∴∠ABE = ∠ACD
∴△DFB△DCA
∴ BF = AC
∵BE是∠ABC的角平分线,BE⊥AC
∴根据三角形三线合一得到△ABC是等腰三角形,E是底边AC的中点
∴EC = AC/2
∴EC = BF/2
∵∠ABC = 45°
CD⊥AB
∴CD = BD
∵BE⊥AC
∠DFB = ∠EFC
∴∠ABE = ∠ACD
∴△DFB△DCA
∴ BF = AC
∵BE是∠ABC的角平分线,BE⊥AC
∴根据三角形三线合一得到△ABC是等腰三角形,E是底边AC的中点
∴EC = AC/2
∴EC = BF/2