令g(x)=xf(1/x),x∈[1/b,1/a].g'(x)=f(1/x)-f'(1/x)/x.(af(b)-bf(a))/(b-a)=(g(1/b)-g(1/a))/(1/a-1/b).存在d使得,(g(1/b)-g(1/a))/(1/a-1/b)=-g'(d)=f'(1/d)/d-f(1/d).取c=1/d即可.
f(x)在[a,b]可导,且 ab>0,证明:存在c∈(a,b),使得(af(b)-bf(a))/(b-a)=cf'(c
1个回答
相关问题
-
设F(x)在区间(a,b)连续,(a,b)可导.证明:在(a,b)内至少存在一点E,使得 [bF(b)-aF(a)]/(
-
f(x)在[a,b]上可导,且f(a)=f(b),证存在c属于ab使f(a)-f(c)=cf'(c)
-
f(x)∈C[a,b] 在(a,b)可导,f(x)不是常数,f(a)=f(b) 怎么证明存在x=c使得f(c)≠f(a)
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)f‘(c)+f^2(c
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)
-
设f(x)在[a,b]上二阶可导且f'(a)=f'(b)=0,试证:存在c属于(a,b),使得If
-
设函数f(x)在[a,b]上连续,在(a,b)内二阶可导,当af(a).证明存在m∈(a,b),使得f''(m)
-
f(x)在[a,b]可导,在(a,b)有二阶导数,证明存在c属于(a,b),使f''(c)=(f'(b)-f'(a))/
-
一道高数证明题设函数f(x)在[a,b]上可导,f(a)=f(b)=0,并存在一点c属于(a,b),使得f(c)>0,证
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)>0;证明存在唯一一点c属于(a,b),