(Ⅰ)∵1+[tanA/tanB]=[−2c/b].
∴1+[sinAcosB/cosAsinB]=[−2sinC/sinB],整理求得cosA=-[1/2],
∵0<A<π,
∴A=[2π/3].
(Ⅱ)∵m+n=(cosB,2cos2[C/2]-1)=(cosB,cosC),
∴|m+n|2=cos2B+cos2C=cos2B+cos2([π/3]-B)=[1+cos2B/2]+
1+cos(
2π
3−2B)
2=[1/2]cos2B-[1/4]cos2B+
3
4sin2B+1=[1/2]sin(2B+[π/6])+1,
∵A=[2π/3],
∴B+C=[π/3],
∵B∈(0,[π/3]),
∴[π/6]<2B+[π/6]<[5π/6],
∴[1/2]<sin(2B+[π/6])≤1,
∴[5/4]<|m+n|2≤[3/2],
∴|m+m|∈(