向量PF1乘以向量PF2=0
则:角F1PF2=90
所以tan∠PF1F2=PF2/PF1=1/2
PF1=2PF2
PF!+PF2=3PF2=2a
a=3PF2/2
F1F2=根号(PF1^2+PF2^2)=根号(PF2^2+4PF2^2)=PF2根号5=2c
c=PF2根号5/2
c/a=(根号5/2)/(3/2)=根号5/3
向量PF1乘以向量PF2=0
则:角F1PF2=90
所以tan∠PF1F2=PF2/PF1=1/2
PF1=2PF2
PF!+PF2=3PF2=2a
a=3PF2/2
F1F2=根号(PF1^2+PF2^2)=根号(PF2^2+4PF2^2)=PF2根号5=2c
c=PF2根号5/2
c/a=(根号5/2)/(3/2)=根号5/3